منابع مشابه
Dynamic Galois Theory
Given a separable polynomial over a field, every maximal idempotent of its splitting algebra defines a representation of its splitting field. Nevertheless such an idempotent is not computable when dealing with a computable field if this field has no factorization algorithm for separable polynomials. Moreover, even when such an algorithm does exist, it is often too heavy. So we suggest to addres...
متن کاملGalois Theory
Remark 0.1 (Notation). |G| denotes the order of a finite group G. [E : F ] denotes the degree of a field extension E/F. We write H ≤ G to mean that H is a subgroup of G, and N G to mean that N is a normal subgroup of G. If E/F and K/F are two field extensions, then when we say that K/F is contained in E/F , we mean via a homomorphism that fixes F. We assume the following basic facts in this set...
متن کاملGalois Theory
Proposition 1.3. Let φ be an automorphism of a field extension K/F , and f(x) ∈ F [x]. Let α1, . . . , αn be the roots of f(x) lying in K. Then φ permutes the set {α1, . . . , αn}. If also the set of αi generate K over F , then two automorphisms φ1, φ2 of K/F which agree on all the αi are equal. Thus, in this case we have an inclusion of Aut(K/F ) as a subgroup of Sym({α1, . . . , αn}) ∼= Sn. P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2010
ISSN: 0747-7171
DOI: 10.1016/j.jsc.2010.06.012